CWDM Network · Data Communications · DWDM Network

Can the Hybrid CWDM-DWDM System Work for Higher Capacity?

When facing the capacity-hungry issue, have you ever hesitated over which WDM system should be choose? As the CWDM system is a more economical solution for limited expanding capacity while the expensive DWDM solution enables much higher capacity, which one should be chose is really a tough decision. In order to solve the issue, can we deploy a Hybrid CWDM-DWDM system, for not choosing a wrong solution to increase the network capacity? Thereby, both the bandwidth shortage with CWDM solution or the potential bankruptcy with DWDM solution can be avoided. Let’s seeking the answer.

Can the Hybrid CWDM-DWDM System Work?

Can the Hybrid CWDM-DWDM system work for higher network capacity? The answer is yes. In fact, it is an ideal solution for boosting the network capacity, which is designed with merging DWDM and CWDM traffic seamlessly at the optical layer, taking full use of the WDM technology. In a hybrid CWDM-DWDM system, more channels can be added to deal with the limited capacity and reach in a CWDM system. That’s to say, the hybrid CWDM-DWDM system utilizes the DWDM technology to empower CWDM system, by integrating CWDM and DWDM equipment, which offers true pay-as-you-grow capacity growth and investment protection.

In short, the hybrid CWDM-DWDM system is a simple, plug-and-play option that enables more DWDM channels interleaved with the existing CWDM channels, for transmitting more data signals. It gets the utmost out of CWDM and DWDM technologies in a single system that greatly reduces the cost, simplifies the installation and keeps the system flexibility for bigger network capacity.

How to Build a Hybrid CWDM-DWDM System?

In general, a normal complete optical connection can be simply done by using a length of fiber patch cable to connect two fiber transceivers and then separately inserting the two transceivers into the ports of two switches. While in a hybrid CWDM-DWDM system, both the CWDM Mux Demux and DWDM Mux Demux should be added offering multiple channels to multiplex and demultiplex the signals. Here offers a typical 44 channel hybrid CWDM-DWDM system information for your reference.

44 Channel Hybrid CWDM-DWDM System

From the figure, we can learn that the original CWDM system uses two 8 channel CWDM Mux Demux with wavelengths from 1470 nm to 1610 nm (20nm channel spacing). In order to add more channels for transmitting larger data signals, two pairs of DWDM multi-channel Mux/Demux are deployed separately under the pass band of the existing CWDM filters. In principle, deploying the DWDM multi-channel Mux/Demux in the 1530nm channel can create 25 100 GHz spaced DWDM channels. However, only 19 DWDM channels circled in the following figure are suitable to be added in the hybrid CWDM-DWDM system. It is also the same to the 1550 channel. Hence, this hybrid CWDM-DWDM system totally offers 6 CWDM channels and 38 DWDM channels with less deployment cost but easier installation.

DWDM Channels in Hybrid CWDM-DWDM System

Conclusion

If you come across the capacity-hungry issue and can’t make the decision about which WDM system should be choose for increasing your network capacity, you are highly recommended to deploy a hybrid CWDM-DWDM system. As an economical and future-proofing solution, the hybrid CWDM-DWDM system can completely deal with the issue of bandwidth shortage when building a CWDM system and avoid the potential bankruptcy for a DWDM system. You can just deploy a CWDM system first. Once the capacity the CWDM system offers can’t meet your requirement, you can add DWDM equipment in for more channels to transmit signals. All in all, the hybrid CWDM-DWDM system is an ideal choice that not only costs less for deployment but keeps the flexibility to increase the network capacity.

Data Communications

10G DWDM Network for Economically Expanding Capacity

It can’t be denied that for most users, the capacity and transmission data rate their 10G networks offer sufficiently meet their needs at present. However, for some users, their 10G networks are capacity-hungry that requires more and more fiber optical cables installed for carrying large data. Considering that the available fiber infrastructure is limited, the method of putting more cables would be infeasible or unsuitable once the infrastructure no longer fulfill the growing requirements. Is there any economical solution to solve this issue, except upgrading the network that would cost a lot? The answer is yes. In order to create new capacity at a relatively low price, WDM technology is come up with that enables virtual fibers to carry more data. Since WDM technology has been a cost effective solution to face the capacity-hungry issue, here will offer the economical DWDM SFP+ transceiver and DWDM Mux Demux solutions for you to build the 10G DWDM network, which enables bigger capacity to meet your network needs.

DWDM SFP+ Transceiver

The DWDM SFP+ transceiver is an enhanced version of DWDM SFP transceiver that can transmit signals at 10Gbps–the max data rate, mostly deployed in the dark fiber project in combination with the DWDM Mux Demux. Like other kinds of SFP+ transceivers, it is also compliant to the SFP+ MSA (multi-source agreement), designed for building 10G Ethernet network. However, the working principle of DWDM SFP+ transceiver is much more complicated than that of common SFP+ transceiver due to the DWDM technology.

DWDM SFP+ transceiver

Generally, the DWDM SFP+ transceiver has a specific tuned laser offering various wavelengths with pre-defined “colors” which are defined in the DWDM ITU grid. The colors of the wavelengths are named in channels and the wavelengths are around 1550nm. Its channels are commonly from 17 to 61 and the spacing between channels is always about 0.8nm. In fiber optical network, the 100GHz C-Band with 0.8nm DWDM SFP+ transceiver is the most commonly used one, while transceivers with other spectrum bands like 50GHz with 0.4nm spacing DWDM SFP+ transceiver are also popular with users.

According to the transmission distance, the DWDM SFP+ transceiver can be divided into two types. One is the DWDM-SFP10G-40 with an optical power budget of 15dB, and the other is the DWDM-SFP10G-80 with an optical power budget of 23dB. As we know, the bigger the optical power budget is, the longer the transceiver will support the 10G network. Hence, the DWDM-SFP10G-40 can transmit 10G signals at lengths up to 40 km, but the DWDM-SFP10G-80 is able to support the same network with a longer distance, 80 km. What should be paid attention to is that the transmission distance can be also affected by the quality and type of the DWDM Mux Demux, the quality and length of the fiber, and other factors.

DWDM Mux Demux

The DWDM Mux Demux is a commonly used type of fiber optical multiplexer designed for creating virtual fibers to carry larger data, which consists of a multiplexer on one end for combining the optical signals with different wavelengths into an integrated signal and a de-multiplexer on the other end for separating the integrated signal into several ones. During its working process, it carries the integrated optical signals together on a single fiber, which means the capacity is expanded to some extent. In most applications, the electricity is not required in its working process because the DWDM Mux Demux are passive.

Unlike the CWDM Mux Demux with 20nm channel spacing, the DWDM Mux Demux has a denser channel spacing, usually 0.8nm, working from the 1530 to 1570nm band. It is designed for long transmission, which is more expensive than CWDM Mux Demux used for short transmission. Meanwhile, it also commonly used the 100 GHz C-band DWDM technique like the DWDM transceiver. As for its classification, there are basically two types according to line type, dual fiber and single fiber DWDM Mux Demux, and six types according to the number of the channels, 4, 8, 16, 40, 44 and 96 channels DWDM Mux Demux. All these types of DWDM Mux Demux are available at FS.COM with ideal prices. To better understand the DWDM Mux Demux, here offers a figure of a stable 8 channel DWDM Mux Demux for your reference.

8 channel DWDM Mux Demux

Conclusion

Taking the cost issue into consideration, deploying a 10G DWDM network is much more economical than upgrading your network from 10G to 40G/100G which almost requires changing out all the electronics in your network. The 10G DWDM network makes full use of DWDM technology to expand the network capacity, which creates virtual fibers to support more data signals. If your 10G network is also capacity-hungry, you are highly suggested to deploy 10G DWDM network to make new capacity. As for the related components the 10G DWDM network needs like transceiver and Mux Demux, you can easily find them at FS.COM. For instance, FS.COM offers the DWDM SFP+ transceivers compatible with almost every brand, including Cisco, Juniper, Brocade, Huawei, Arista, HP and Dell, which have been tested to assure 100% compatibility.

Originally source: http://www.chinacablesbuy.com/10g-dwdm-network-for-economically-expanding-capacity.html